Sign for Notice Everyday    Sign Up| Sign In| Link| English|

Our Sponsors


    ADVCOMP 2012 - The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

    View: 3123

    Website www.iaria.org | Want to Edit it Edit Freely

    Category ADVCOMP 2012

    Deadline: May 07, 2012 | Date: September 23, 2012-September 28, 2012

    Venue/Country: Barcelona, Spain

    Updated: 2011-12-15 19:03:28 (GMT+9)

    Call For Papers - CFP

    All tracks/topics are open to both research and industry contributions.

    Tracks:

    Advances on computing theories

    Finite-state machines; Petri nets /stochastic/colored/probabilistic/etc; Genetic algorithms; Machine learning theory; Prediction theory; Bayesian theory /statistics/filtering/estimation/reasoning/rating/etc; Markov chains/process/model/etc; Graphs theories

    Advances in computation methods

    Hybrid computational methods; Advanced numerical algorithms; Differential calculus; Matrix perturbation theory; Rare matrices; Fractals & super-fractal algorithms; Random graph dynamics; Multi-dimensional harmonic estimation

    Computational logics

    Knowledge-based systems and automated reasoning; Logical issues in knowledge representation /non-monotonic reasoning/belief; Specification and verification of programs and systems; Applications of logic in hardware and VLSI; Natural language, concurrent computation, planning; Deduction and reasoning; Logic of computation; Dempster-Shafer theory; Fuzzy theory/computation/logic/etc

    Advances on computing mechanisms

    Clustering large and high dimensional data; Data fusion and aggregation; Biological sequence analysis; Biomecatronics mechanisms; Biologically inspired mechanisms; System theory and control mechanisms; Multi-objective evolutionary algorithms; Constraint-based algorithms; Ontology-based reasoning; Topology and structure patterns; Geometrical pattern similarity; Strong and weak symmetry; Distortion in coordination mechanisms

    Computing techniques

    Distributed computing; Parallel computing; Grid computing; Autonomic computing; Cloud computing; Development of numerical and scientific software-based systems; Pattern-based computing; Finite-element method computation; Elastic models; Optimization techniques; Simulation techniques; Stream-based computing

    Computational geometry

    Theoretical computational geometry; Applied computational geometry; Design and analysis of geometric algorithms; Design and analysis of geometric algorithms and data structures; Discrete and combinatorial geometry and topology; Data structures (Voronoi Diagrams, Delaunay triangulations, etc.); Experimental evaluation of geometric algorithms and heuristics; Numerical performance of geometric algorithms; Geometric computations in parallel and distributed environments; Geometric data structures for mesh generation; Geometric methods in computer graphics; Solid modeling; Space Partitioning; Special applications (animation of geometric algorithms, manufacturing, computer graphics and image processing, computer-aided geometry design, solid geometry)

    Interdisciplinary computing

    Computational /physics, chemistry, biology/ algorithms; Graph-based modeling and algorithms; Computational methods for /crystal, protein/ structure prediction; Computation for multi-material structure; Modeling and simulation of large deformations and strong shock waves; Computation in solid mechanics; Remote geo-sensing; Interdisciplinary computing in music and arts

    Cloud computing

    Hardware-as-a-service; Software-as-a-service [SaaS applicaitions]; Platform-as-service; On-demand computing models; Cloud Computing programming and application development; Scalability, discovery of services and data in Cloud computing infrastructures; Privacy, security, ownership and reliability issues; Performance and QoS; Dynamic resource provisioning; Power-efficiency and Cloud computing; Load balancing; Application streaming; Cloud SLAs, business models and pricing policies; Custom platforms; Large-scale compute infrastructures; Managing applications in the clouds; Data centers; Process in the clouds; Content and service distribution in Cloud computing infrastructures; Multiple applications can run on one computer (virtualization a la VMWare); Grid computing (multiple computers can be used to run one application); Cloud-computing vendor governance and regulatory compliance

    Grid Networks, Services and Applications

    GRID theory, frameworks, methodologies, architecture, ontology; GRID infrastructure and technologies; GRID middleware; GRID protocols and networking; GRID computing, utility computing, autonomic computing, metacomputing; Programmable GRID; Data GRID; Context ontology and management in GRIDs; Distributed decisions in GRID networks; GRID services and applications; Virtualization, modeling, and metadata in GRID; Resource management, scheduling, and scalability in GRID; GRID monitoring, control, and management; Traffic and load balancing in GRID; User profiles and priorities in GRID; Performance and security in GRID systems; Fault tolerance, resilience, survivability, robustness in GRID; QoS/SLA in GRID networks; GRID fora, standards, development, evolution; GRID case studies, validation testbeds, prototypes, and lessons learned

    Computing in Virtualization-based environments

    Principles of virtualization; Virtualization platforms; Thick and thin clients; Data centers and nano-centers; Open virtualization format; Orchestration of virtualization across data centers; Dynamic federation of compute capacity; Dynamic geo-balancing; Instant workload migration; Virtualization-aware storage; Virtualization-aware networking; Virtualization embedded-software-based smart mobile phones; Trusted platforms and embedded supervisors for security; Virtualization management operations /discovery, configuration, provisioning, performance, etc.; Energy optimization and saving for green datacenters; Virtualization supporting cloud computing; Applications as pre-packaged virtual machines; Licencing and support policies

    Development of computing support

    Computing platforms; Advanced scientific computing; Support for scientific problem-solving; Support for distributed decisions; Agent-assisted workflow support; Middleware computation support; High performance computing; Problem solving environments; Computational science and education; Neuronal networks

    Computing applications in science

    Advanced computing in civil engineering; Advanced computing in physics science; Advanced computing in chemistry science; Advanced computing in mathematics; Advanced computing in operation research; Advanced computing in economics; Advanced computing in electronics and electrical science; Advanced computing on Earth science, geosciences and meteorology

    Complex computing in application domains

    Computation genomic; Management of scientific data and knowledge; Advanced computing in bioinformatics and biophysics; Advanced computing in molecular systems and biological systems; Application of engineering methods to genetics; Medical computation and graphics; Advanced computing in simulation systems; Advanced computing for statistics and optimization; Advanced computing in mechanics and quantum mechanics; Advanced computing for geosciences and meteorology; Maps and geo-images building; Curve and surface reconstruction; Financial computing and forecasting; Advanced computing in robotics and manufacturing; Advanced computing in power systems; Environmental advanced computing


    Keywords: Accepted papers list. Acceptance Rate. EI Compendex. Engineering Index. ISTP index. ISI index. Impact Factor.
    Disclaimer: ourGlocal is an open academical resource system, which anyone can edit or update. Usually, journal information updated by us, journal managers or others. So the information is old or wrong now. Specially, impact factor is changing every year. Even it was correct when updated, it may have been changed now. So please go to Thomson Reuters to confirm latest value about Journal impact factor.